NASA-TP-2772

Wind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wing

Note:

This document has not been validated by ESDU. It is provided to our users as a useful reference source.

Abstract:

An investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag.

Author(s):
D.G. Murri; F.L. Jordan Jr

Indexed under:

  • None

Details:

NASA-TP-2772
Format:
  • PDF (from scanned original)
Status:
  • Original, issued 01 Jan 1987
Previous Releases:
  • None available